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A Saliency Detection Model Using Low-Level
Features Based on Wavelet Transform
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Abstract—Researchers have been taking advantage of visual
attention in various image processing applications such as image
retargeting, video coding, etc. Recently, many saliency detection
algorithms have been proposed by extracting features in spatial
or transform domains. In this paper, a novel saliency detection
model is introduced by utilizing low-level features obtained from
the wavelet transform domain. Firstly, wavelet transform is
employed to create the multi-scale feature maps which can rep-
resent different features from edge to texture. Then, we propose
a computational model for the saliency map from these features.
The proposed model aims to modulate local contrast at a location
with its global saliency computed based on the likelihood of the
features, and the proposed model considers local center-surround
differences and global contrast in the final saliency map. Experi-
mental evaluation depicts the promising results from the proposed
model by outperforming the relevant state of the art saliency
detection models.

Index Terms—Feature map, saliency detection, saliency map, vi-
sual attention, wavelet transform.

I. INTRODUCTION

V ISUAL attention is one of the primary features of the
Human Visual System (HVS) to derive important and

compact information from the natural scenes [1], [2]. Since the
surrounding environment includes an excessive amount of in-
formation, visual attention mechanism enables a reduction of
the redundant data which benefits perception during the selec-
tive attention process [1]–[4]. Many studies have tried to build
computational models to simulate this mechanism [5], [6].
There are two types of the visual attention mechanism

(and therefore two types of computational modeling as well):
bottom-up and top-down approaches. The bottom-up approach
is stimulus-driven, mostly obtained from early features, and
task independent [7], [8]. However, the top-down approach,
which is goal-driven, consists of high-level data processing and
prior knowledge to support the tasks such as object recognition,
scene classification, target detection, identification of the con-
textual information, etc. [9], [10]. Both of the computational
models aim at generating saliency maps to detect the salient re-
gions for images. We are to explore bottom-up visual attention
modeling in this work.
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One of the earliest computational models of bottom-up vi-
sual attention was proposed by Itti et al. [10], [11]. The algo-
rithm obtains the saliency map based on the intensity, color, and
orientation conspicuity maps [11]. These conspicuity maps are
attained by across-scale addition of feature maps, while the fea-
ture maps capture the center-surround differences between var-
ious Gaussian pyramid and oriented pyramid scales [11]. Since
the saliency map is computed in coarser scales, local infor-
mation loss is unavoidable in this algorithm. To detect global
conspicuity differences between feature maps, Itti et al. [10],
[11] gave two different types of normalization for the feature
maps: 1) global non-linear normalization (being simple and suit-
able for real-time applications but not biologically plausible);
2) iterative filtering with the difference of Gaussian (biologi-
cally plausible but computationally expensive). However, these
normalization and iterative filtering procedures are not suffi-
ciently good to relate global feature differences with the cor-
relation among feature dimensions, since each map is normal-
ized regardless of the statistical information of other maps even
though these two normalization schemes provide some global
reasoning. Another way of combining the feature maps was pro-
posed by Oliva et al. [12]. In [12], the feature maps are gener-
ated from the spatial decomposition of the color sub-bands and
Gaussian distribution of the local features is computed for the
saliency map. Saliency map computation based on a probability
density function avoids the need of normalization and pooling
operations that are necessary in [10]. However, it emphasizes
global contrast more than the local contrast even it is based upon
the local features.
Some studies try to build visual attention models by taking

color contrast information into account in various ways [13],
[14]. Achanta et al. [14] firstly obtained the Gaussian-filtered
image and then used its arithmetic mean vector to derive the
saliency map instead of the spatial decomposition. The CIE Lab
color space is used for each image location to form a feature
vector, and then, the absolute difference between the Gaussian-
blurred image and the arithmetic mean vector is calculated to
derive the saliency map [14]. The saliency map is processed by
the mean-shift segmentation algorithm to extract the regions of
interest in the input image for better performance. This approach
is mostly good for images with large and homogeneous objects
with clear boundaries [14]. Hence, it has limitations on applica-
tions because of its dependency on object size and uniformity.
Recent studies have tried to obtain the saliency map for im-

ages in the transform domain [15]–[17]. The Fourier Transform
(FT) can be expressed with the polar form as two different com-
ponents: phase and amplitude spectrums. Stated by Oliva et al.
[15], the former carries information concerning the form and the
position of local image structure; the latter holds the informa-
tion of the global composition of the image that relates to the
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overall scene layout [15]. Thus, the eccentricity or irregularities
on spectral information can lead to attention regions of the scene
[16]. Hou et al. first defined the saliency residual with log ampli-
tude spectrum [16], and the saliency map is derived by applying
the inverse FT on an exponential function which combines spec-
tral residual and phase spectrum information [16]. Guo et al.
[17] identified the input image frame in the spatio-temporal do-
main with four features: motion, intensity, and two chromatic
colors. These four features are used as the quaternion data for
an input scene. In this model, the quaternion FT (QFT) is firstly
calculated, and then, the amplitude spectrum values are set to
a constant value for each QFT feature so that the saliency map
is constituted from the inverse QFT of the phase spectrum data
[17]. In [16] and [17], the FT is the key for the final saliency
map. Therefore, these models result in a saliency map in which
the global irregularities of the scene can be more dominant than
the local irregularities. Another disadvantage of this model is
the high down-sampling requirement for images, which would
yield spatial information loss. Moreover, it is known that FT
may encounter difficulties and lead unsatisfactory results with
non-stationary or a-periodic signals [18], [19], since such sig-
nals are better to be analyzed locally rather than globally. Hence,
schemes in [16] and [17] have limitations regarding the image
size requirement and saliency information used.
Recently, Wavelet transform (WT) has begun to attract re-

searchers’ effort in visual attention modeling [20], [21]. The
advantage of the WT is its ability to provide multi-scale spa-
tial and frequency analysis at the same time [18]. Tian et al.
[20] proposed a WT-based salient detector for image retrieval
which depends on local and global variations of wavelet co-
efficients at multi-scale levels. The idea is to account for both
global and local features in theWT space: the points with higher
global variation based on the absolute wavelet coefficients at
courser scales are selected, and these selected points are tracked
along the finer scales to detect the salient points [20]. The salient
points will be the sum of the wavelet coefficients at tracked
points along the multi-scale WT [20]. However, this algorithm
is only able to give salient points rather than salient regions com-
pared to the models [11], [14] and [16]. Therefore, even though
salient points tracked at the finest resolution of the WT can rep-
resent the image for image retrieval [20], it is hard to compare
this algorithm for attention region or object detection as a com-
putational model of saliency detection. Murray et al. [21] de-
rived weight maps from the high-pass wavelet coefficients of
each level based on the WT decomposition. Two important as-
pects for the derivation of weight maps are the consideration of
the human sensitivity to local contrast, and the energy ratio of
central and surrounding regions to mimic the center-surround
effect [21]. In [21], the saliency map is obtained by the inverse
WT (IWT) of weight maps for each color sub-band [21]. Al-
though WT representation is better than FT for images by pro-
viding more local analysis, there is lack of accounting for global
contrast because the computation is based on the local differ-
ences in [21]. Hence, the local contrast is more dominant than
the global contrast in the saliency model of [21].
In this paper, we propose a novel saliency detection model

based on high-pass coefficients of the wavelet decomposition
after eliminating some high-frequency components of the
image. The idea is to create the feature maps by IWT on the

multi-level decomposition. Each feature map contains local
variations in multi-scale resolution; in other words, they rep-
resent band-pass local information with different frequency
bandwidths. The advantage of the proposed model is that we
create more detailed feature maps (edge to texture) by applying
IWT on various decomposition levels. This helps to observe
the irregularities with different bandwidths. Then, two saliency
maps are created: local and global saliency maps. Here, we
create these two saliency maps for two reasons: i) to avoid the
normalization of each feature map separately which is not effi-
cient for considering the statistical relation among the feature
maps for the saliency in a global perspective; ii) to incorporate
local and global saliency as two different maps to make sure
of taking both local and global contrast into consideration
sufficiently. Finally, the local and global maps are combined to
yield the final saliency map.
As described above, the existing visual attention models are

proposed in different domains (spatial, FT, and WT) [11]–[21].
For comparison purpose in this work, the most relevant models
to the proposed method are [11] and [14] in the spatial domain,
[16] in the FT domain, and [21] in the WT domain. These ex-
isting models generate saliency maps while considering either
local features or global ones more than the other, or they are
not good enough to relate global features from the local ones as
stated earlier. On the contrary, the proposed saliency detection
model includes both local and global saliency information by in-
tegrating local feature differences with the global distribution of
these features. The global saliency is based on the likelihood of
local features for a given location as in [12]. It also takes the sta-
tistical relation among the feature maps into account. In the pro-
posed model, the saliency map includes both narrow and wide
range of frequency components due to the multi-scale deriva-
tion. Thus, the proposed model can be used for images with
different object sizes and extents of uniformity. It also gen-
erates the saliency map with the same resolution of the input
image. Another advantage is that the wavelet decomposition in
the proposed model continues until the possible coarsest scale
is reached, in order to attain the feature maps. By this way, we
can obtain salient regions independent from their sizes or unifor-
mity due to the features with high contrast from edge to texture
since the salient points can be defined as the feature variations
of the location with its surroundings based on the WT coeffi-
cients [20]. Experimental results demonstrate that the proposed
algorithm produces better performance with respect to the rele-
vant existing models.
The rest of this paper is organized as follows: Section II

first introduces the concept of wavelet decomposition, and then
presents the proposed model in detail, with proper analysis
and justification; experimental results and evaluation for the
proposed model are given in Section III; the final section gives
conclusions for the paper.

II. THE PROPOSED SALIENCY DETECTION MODEL

A. Wavelet Analysis

Even though wavelets were firstly introduced in the early
20th century by Alfred Haar, most of the developments in
this area have been progressed since the late 20th century
[18]. Recently, the use of wavelets in signal analysis has been
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Fig. 1. Illustration of frequency components for a 3-level wavelet decompo-
sition [19]: s[n] is the 1-D signal which covers all the frequency components;

, , and are the approximation data for low-pass outputs to depict
the frequency content for each level of decomposition; , , and are
the details of the signal s[n] as the high-pass outputs to depict the frequency
content for each level of the decomposition.

rapidly increasing in many engineering applications such as
signal de-noising, compression, enhancement, video coding,
and pattern classification, etc.
The signal analysis for frequency components can be

achieved by FT in a global context, but it is not possible to
make time-frequency analysis with FT (i.e., local frequency
components cannot be obtained [18], [19], [22], [23]); the
short-time-Fourier transform (STFT) can be utilized to per-
form local frequency analysis, since it yields the frequency
information of a given time (so the technique is referred as
time-frequency analysis) [18], [19], [22], [23]. It should be
noted that STFT can be applied by taking the spatial interval
instead of the time interval while dealing with the image since
there is not any time information for still images. However,
there are some limitations with this technique. With STFT, there
is a constant resolution with spatial and frequency analysis, so
the success of the application depends on the selection of the
spatial interval [18], [19], [22], [23]. In addition, trying several
spatial intervals on the image increases the computation time
for the application.
The multi-scale wavelet analysis is able to perform better

local frequency analysis since it examines the signal at different
bands and bandwidths [18], [19], [22], [23]. Wavelet analysis is
a process of applying multi-resolution filter-banks to the input
signal [18], [23]. One property of the orthogonal wavelet filter-
banks is that the approximation and detailed signals are obtained
from the two frequency bands: low-pass and high-pass, respec-
tively [18], [19], [23]. For the three-level wavelet decomposi-
tion, the frequency components can be simply expressed as 1-D
data, as shown in Fig. 1 [19].
The philosophy behind the saliency generation is to create

features and feature maps which represent the contrast or center-
surround difference, taking both local and global factors into
account. For example, in [14], the band-pass filter is stated to
obtain the contrast values in the image for the saliency infor-
mation, so this information can be demonstrated by the band-
pass output of the image as in [11], [14]. Hence, among the
band-pass regions, the visually dominant ones are most likely
to be the salient regions in the scene. The wavelet decompo-
sition has the advantage in extracting oriented details (hori-
zontal, vertical and diagonal) in the multi-scale perspective, and
enables high spatial resolution with higher frequency compo-
nents and low spatial resolution with lower frequency compo-
nents without information loss in details during the decompo-

Fig. 2. The framework of the proposed saliency detection model ( : intensity
channel, : red-green color channel, and : blue-yellow color channel).

sition process [18], [23]. Therefore, the WT with selected de-
composition levels can provide feature maps in the band-pass
regions without low-frequency content after reconstruction by
neglecting approximation signals. In Fig. 1, it can be seen that
without the approximation data, for lower levels of IWTs, infor-
mation with smaller bandwidths and higher-frequency compo-
nents will be included in the feature map. However, for higher
levels of IWTs, larger bandwidths with more frequency compo-
nents will be included in the feature map after the reconstruction
process. This means that reconstruction with details from fine to
coarse scales will generate feature maps representing the edge
to texture differences.

B. Overview of the Proposed Model

The proposed model is to create the feature maps by in-
creasing the bandwidths or the frequency components from
higher to lower values. As shown in Fig. 2, it integrates two
different maps referred as local and global saliency maps. Both
maps are attained by features of the same level, based upon the
wavelet coefficients.

C. Feature Map Generation

The first step of the proposed model illustrated in Fig. 2
starts with the computation of feature maps. First of all, instead
of using rgb color space for saliency detection, an image is
converted to the CIE Lab color space (CIE illumination D65
model is selected for conversion as the white-point parameter in
Matlab® rgb to CIE Lab converter). The conversion is needed
due to the fact that the Lab color space is uniform and similar
to the human perception, with a luminance and two-chromatic
channels (RG and BY) [9]. To remove noise, we apply an
2D Gaussian low-pass filter to the input color image :

(1)

where is the 2-D filter; is noise-removed version
of ; denotes the convolution operation. For noise reduction,
a small filter size is selected ( in this work) to filter very
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high frequency noise [14]. Then, each channel is normalized to
the range of .
The sub-bands of the image will be formed by WT for a

number of levels, as to be shown in (2). Daubechies wavelets
(Daub.5) are chosen since its filter size is appropriate for pixel
neighborhoods, computation time, and the overall result.

(2)

where is the maximum number of the scaling for de-
composition process, i.e., the resolution index
and the level corresponds to the coarsest resolution; is the
channels of as ; (to represent scaling co-
efficients) is the approximation output at the coarsest resolution
for each channel; , and are the wavelet coefficients
of horizontal, vertical and diagonal details for the given and
, respectively.
The wavelet coefficients representing the details of the image

at various scales are used to create several feature maps with
increasing frequency bandwidths. The feature maps can be cal-
culated by IWT. Since we already apply the Gaussian filter, we
can create feature maps from the details of WT by neglecting
approximation data during the IWT process. Hence, several fea-
ture maps can be obtained while representing the contrast from
edge to texture. The approximation data of the selected decom-
position level is not used during IWT operation as in (3) below,
to detect the global saliency:

(3)

where is the feature map generated for the level de-
composition for each image sub-band , is the scaling factor
(since the range of the Lab input image for each channel is

, there is a large range for feature values in (3); there-
fore, an appropriate value of is the scaling factor to limit
the feature maps, and in (3) where this scaling is
necessary to avoid the huge variation in the covariance ma-
trix among the feature maps during the computation of global
saliency map in (4)); is the reconstruction function re-
ferring to the IWT of , and by neglecting the .
Thus, for and , Equation (3) cre-
ates feature maps for an input color image, and each fea-
ture map’s resolution is equal to the size of the input image. In
Fig. 3, five sample color images are given at the top of the figure,
and, the feature maps of , , and channels for each sample
image are demonstrated respectively. For each color channel at
each row of the Fig. 3, there are 8 feature maps from left to
right representing the reconstruction results from wavelet coef-
ficients of the 1st-level decomposition to the 8th-level decom-
position for the given input images (Fig. 3). It should be noted
that 8-level reconstruction consists of details from the coarsest
scale (the 8th level) to the finest scale (the 1st level) wavelet co-
efficients, the 7-level reconstruction consists of details from the
7th level to the finest scale (the 1st level) wavelet coefficients,
and so on.

D. Global Distribution of Features

After obtaining the feature maps, the next step is to calculate
the global distribution of the local features to obtain the global
saliency map. From in (3), a location can be
represented as a feature vector with a length of
(3 channels , and , and -level wavelet-based features for
each channel) from all feature maps.
Examples have been given in Fig. 3, where each example

image has 8 feature maps for each channel, and thus there are
24 features for each location . Regarding the feature maps,
the likelihood of the features at a given location can be defined
by the probability density function (PDF) with a normal distri-
bution [12], [24]. Therefore, the Gaussian PDF in multi-dimen-
sional space can be written as [24], [12]:

(4)

with

(5)

where is the mean vector containing the mean of each feature
map, i.e., ; is the transpose operation; in (5) is the

covariance matrix; , the number of the feature
vector referring to the dimension of the feature space including
3 color channels and feature maps for each color channel, and

is the determinant of the covariance matrix [24].
Using the PDF in (4), the global saliency map can be com-

puted as (6) below. As can be seen in (6), the result is filtered
with a 2-D Gaussian low-pass filter to obtain a smooth
map where , which is a commonly used filter size in many
saliency applications as in [9], [10], [11], [12].

(6)

where includes the information both locally and globally
since it is computed from the local features in (3). However,
it can be seen as a global saliency map because its effect on
global distribution on the saliency map is much higher, and
may become dominant (i.e., overestimated) due to the content
or structure of the scene. Also, it includes the statistical relation
among the feature maps so it may give some important informa-
tion which cannot be detected well enough by the local contrast.
Moreover, the result from (6) may generate a saliency map with
small salient regions, and thus causes some loss in local saliency
information. It can be seen that the global saliency map exam-
ples in Fig. 4(b) are quite similar to the local saliencymap (given
in (7)) examples in Fig. 4(c). This is the result when the distri-
bution of the local features for the salient regions is balanced
with the local contrast for the given features. However, there
are also cases where global saliency can suppress the local con-
trast too much (see Figs. 5(b) and 5(c)). On the other hand, it
may yield important salient regions which are less salient lo-
cally or the locally salient regions may not be as attractive as
globally salient regions. As can be seen in Fig. 5(g), the wing
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Fig. 3. Images and their feature maps from the CIE Lab color space as luminance and two chromatic channels respectively (RG/BY).

and the head of the animal have high local saliency; however,
the global distribution of the local features gives more attention
to the head rather than the wings (Fig.5(f)). Therefore, examples

in Fig. 5 show that different saliency maps can be beneficial to
adjust the saliency for local features or to alleviate overestima-
tion for global information for the better saliency map.
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Fig. 4. Examples for similar local and global saliency responses. (a) Color images. (b) Global saliency maps obtained by (6). (c) Local saliency maps obtained
by (7). (d) Final saliency maps.

Fig. 5. Examples for different local and global responses. ((a), (e)) Color images. ((b), (f)) Global saliency maps obtained by (6). ((c), (g)) local saliency maps
obtained by (7). ((d), (h)) final saliency maps.

E. Linear Combination of the Local Features

In this work, local saliency is created by fusing the feature
maps at each level linearly without any normalization operation
in [11], as the formula to be given in (7) below. Hence, this new
map will be computed based on the local features computed in
(3) in which the maximum value between channels of the input
image is taken into account at each level. Figs. 4(c), 5(c), and
5(g) demonstrate the local saliencymaps of the proposed model.
It can be seen that there are differences in some regions be-
tween global saliency maps (Figs. 5(b), 5(f)) and local saliency
maps (Figs. 5(c), 5(g)). The performance evaluation for local
and global saliency maps is also given in Fig. 6 in Section III to
show their differences.
The feature maps obtained in (3) are used for calculating the

local saliency map as:

(7)

where , , and are the feature maps at
scale for , and channels respectively; is the local
saliency map.

F. Combination of the Global and Local Saliency Maps

Based on (6) and (7), we can create the global and local
saliencymaps. The final saliency is the result of combining these
two maps. The integration is performed to modulate the local
saliency map with its corresponding global saliency map de-
fined as:

(8)

where is the final saliency map, and
are the local and global saliency maps linearly scaled to the
range . Since the modulation is applied by the multipli-
cation of local saliency and the exponential value of the global

saliency, as , is used as the non-linear
normalization function to diminish the effect of amplification
on the map. The possible values of the output in (8) will be be-
tween 0 and 1 due to the parameter selection. In (8), we obtain



102 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 1, JANUARY 2013

a saliency map which considers local features at a location with
its respective global feature distribution (shown in Figs. 4(d),
5(d) and 5(h)). Therefore, the global relation between local fea-
ture maps is established without the need of any complex feature
map normalization process for enhancing each feature map as
in [10].
In addition, we enhance the final saliency map with a sim-

ilar fashion in [25]. As stated by Goferman et al. [25], based
on Gestalt laws [26], saliency values to describe the regions of
interest can be reevaluated around the regions that are the most
salient points of the scene. The idea is: the locations around the
focus of attention (FoA) have to be more attentive than those
away from the FoA [25]. Therefore, saliency values around the
most salient points are increased to enhance the performance of
the saliency map as [25]:

(9)

where is the saliency value at point ,
is the salient value of the most salient points at the location

extracted from the saliency map in (8) with a threshold
of 0.8 as in [25], is the distance between the loca-
tion and its closest FoA at the location . Obviously,
the saliency values around the salient regions will increase in the
final saliency map; on the other hand, the saliency values of the
points that are distant to the attention regions will decrease or re-
main largely unchanged. The proposed final saliency has better
performance than the local and global saliency maps as shown
in Fig. 6. The analysis and evaluation are given in Section III
for the proposed algorithm.

III. EXPERIMENTAL RESULTS

In this work, the Microsoft public database [27] including
5000 color images is used to evaluate the performance of the
proposed model quantitatively. Besides the color images, there
are also ground-truths for images in the database: the human-la-
beled attention regions highlighted with a bounding box created
by 9 subjects [27]. These bounding boxes represent the attention
regions, i.e., the object/region of interest in scenes perceived
by the subjects. As a result of averaging the human responses,
the performance evaluation of a saliency detection model can
be achieved quantitatively by checking the consistency between
the human-labeled ground-truth and the saliency map from any
computational model.
Prior to the model comparisons, we have evaluated the per-

formance of local saliency, global saliency, and final saliency
in our model to demonstrate how they affect the overall perfor-
mance. The quantitative performance for the database is eval-
uated based on overall precision P, recall R, and F-Measure F
, as defined below respectively [27]:

(10)

(11)

(12)

Fig. 6. Overall performance evaluation for the local, global and final saliency
maps of the proposed model.

where is the ground-truth map, is the saliency
map from the computational model, and in (12) is a positive
parameter to decide the relative importance of the precision over
the recall in evaluating the precision (a greater value for indi-
cates the higher importance of recall over precision; is chosen
as 0.3 in this work).
For the experimental results, is related to the saliency

detection performance of the computational model; is the
ratio of salient regions from correct detection and ground-truth;
F-Measure is a performance measure as being the harmonic
mean of and [27]. In the evaluation, the generated
saliency map is converted to a binary image with an appropriate
threshold (as to be discussed next) for performance comparison,
and and in (10) and (11) are the binary maps to
calculate , , and F-Measure values.
For this analysis, Otsu’s automatic threshold algorithm [28]

is selected for the binary map generation since it makes the test
less independent than the user defined threshold values. ,
and F-measure results for the proposed local, global and final
saliencies are given in Fig. 6. It can be seen that overall perfor-
mance of the local saliency is better than global saliency for
the 5000-image database, while their precision performances
are very similar; but recall and F-measure values of the local
saliency are better than those of the global saliency. From Fig. 6,
the final saliency map results in better performance than local or
global saliency, regarding , , and F-measure results. It can
be concluded that global saliency map and local saliency map
may carry important information of different regions for some
images as in Figs. 5(f) and 5(g). This demonstrates the advan-
tage of combining the local and global saliency for the proposed
model to create the final saliency map.
As mentioned in Section I, we have selected the works by

Itti et al. [11], Achanta et al. [14], Hou et al. [16], and Murray
et al. [21] for comparison. The reason is that each work above
is unique due to their technical approaches, and they represent
spatial-based models, FT-based models, andWT-based models,
respectively. Since our intention is to compare the saliency de-
tection approaches, we have used the saliency computation part
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Fig. 7. Performance evaluation. (a) Color images. (b) Saliency maps of Itti’s model [11]. (c) Saliency maps of Hou’s model [16]. (d) Saliency maps of Murray’s
model [21]. (e) Saliency maps of Achanta’s model [14]. (f) Saliency maps of the proposed model.

of [14] by neglecting the segmentation part, because all the se-
lected models (including the proposed model) are saliency map
generation based on low-level features without segmentation. In
Fig. 7, some examples are given for comparison with models in
[11], [14], [16], [21], and the proposed model.
Firstly, we evaluate the performance of the proposed model

based on the , , and F-measure measures. Since the
threshold effects the performance evaluation, we have selected
two different methods to obtain the threshold value; using
Otsu’s automatic threshold model [28] and mean value of the
saliency map. Figs. 8 and 9 show the overall performance
of the existing models and our proposed algorithm based on
the threshold values from Otsu’s method and averaging the
saliency map respectively. Experimental results prove the
reliability of the proposed model quantitatively according to
the overall performance from 5000 images. For both threshold
selection methods, our model outperforms others based on the

precision and F-Measure values (see Figs. 8 and 9). Regarding
the Otsu’s threshold method, the recall value of the work [21]
is better than our model; however, its precision and F-measure
values are relatively low due to the high recall value which
causes more irrelevant salient regions occur (Fig. 7(d)). On the
other hand, the precision value of [21] is the lowest among the
compared models, and our model has the best precision and
F-Measure values for this case too even though the recall value
of our model is similar to that of [21] based on the threshold
with mean value.
Secondly, we also evaluate the performance of the proposed

model based on the Receiver Operating Characteristic (ROC)
[25]. The saliency maps include two different regions: salient
and non-salient regions. Percentage of the salient regions from
the ground-truth intersecting with the salient region from the
saliency map is called True Positive Rate (TPR). Percentage of
the non-salient regions from the ground truth intersecting with
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Fig. 8. Performance comparison between the proposed model and other ex-
isting ones.

Fig. 9. Performance comparison between the proposed model and other ex-
isting ones.

the salient region from the saliency map is called False Positive
Rate (FPR). From these data, the ROC curves for the saliency
detection models are shown in Fig. 10.
A larger ROC area means better performance for a saliency

detection model. Fig. 11 shows the ROC areas for the com-
pared models and the proposed model. The saliency model [14]
without the segmentation integration has the smallest ROC area
compared to other models. The models [16] and [21] have sim-
ilar results by yielding better performance than those in [14] and
[11]. The proposed algorithm has the largest ROC area among
the compared models.
In sum, the proposed algorithm is first tested based on the

precision, recall and F-measure values. Then, the ROC area test
is selected as another performance measurement to compare the
proposed model with others. Regarding these two test criteria,
the overall performance of the proposed model is reliable and
yields better results with respect to the relevant existing works.

Fig. 10. ROC curves for different saliency detection models.

Fig. 11. ROC area results from different saliency detection models.

IV. CONCLUSIONS

In this paper, a novel bottom-up computational model of vi-
sual attention is proposed to obtain the saliency map for images
based on wavelet coefficients. Various feature maps are gener-
ated by IWT with the band-pass regions of the image in various
scales. The proposed model derives feature maps of band-pass
filtered regions from the input image with increasing frequency
bandwidths. It can be seen as an adaptation of the center-sur-
round structure of the HVS (human visual system) since feature
maps includes components from the edge to the texture based
on the multi-level wavelet decomposition. Using these features,
the local and global saliency maps are introduced to form the
final saliency map.
The final saliency map represents both the local contrast of

each location on the scene and the global distribution of the fea-
tures as an amplifier for local saliency values. The local saliency
map is calculated based on the linear combination of each level’s
maximum value in the feature maps within , and chan-
nels, while the global saliency map is computed based on the
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normal distribution of the local features. The final saliency de-
tection from the combination of the local and global informa-
tion has performed well on the public database with 5000 im-
ages and the associated human-labeled ground truth. Extensive
experimental evaluation confirms that the proposed model per-
forms better than the relevant existing models under different
test conditions.
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